
Introduction to current-drive audio amplifiers for audio-frequency induction-loop 
('hearing loop') systems (Rev. 1) 
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Abstract: Some basic electrical theory is first summarized, to aid consistency of understanding. The 
differences between conventional voltage-drive amplifiers and current-drive amplifiers are explained using 
ideal amplifiers. Examples are then given of the use of freely-available integrated audio-amplifier parts in 
current-drive configurations. The paper is intended to be as accessible as possible, without requiring 
advanced technical knowledge. 

1 History 

Most of electronics is based on applying an input voltage to some circuit and getting an output voltage 
that is bigger, smaller or altered in a desirable way. The idea of apply an input current to something 
probably surfaced in the early days of 'electronic' television (camera tubes and cathode-ray tubes, not 
scanning discs). Much use was made of electromagnet coils for focusing and deflecting electron beams. 
These need feeding with a carefully-controlled current, even though their resistance changes a lot as they 
heat up. If a constant voltage were applied, then, the current would decrease as the coil heats up. What is 
needed is a constant-current supply, which provides the necessary current even though the coil 
resistance changes. Luckily, a pentode valve/tube provided a constant current, proportional to the input 
voltage, without any special circuitry beyond keeping the screen (g2) voltage constant. 

While is it always uncertain who first did anything, it was Leon Pieters of Ampetronic who took the 
'constant-current' concept from television technology and applied it to hearing loops. In this case, it's not 
needed to combat the effect of heating of the loop wire but the effect of the loop inductance on the 
frequency response of the magnetic field generated by the loop. 

2 Basics 

We can't get away without understanding a bit of basic electronics, because without it the words we have 
to use won't mean anything. So, we begin with  a battery, which converts internal chemical energy into 
electricity. It has a voltage of 9 volts (after the Italian scientist Volta). Voltage is the electrical pressure that 
drives the electricity round a circuit, which is a network, including at least one closed loop, of wires and 
components.  

A battery and a traditional filament lamp are connected in a single loop, forming a series circuit. Electric 
current flows from the battery to the lamp and back to the battery. There actually is something that flows – 
electrons, which are sub-atomic particles carrying negative electric charge. It's only negative because 
Ben Franklin, very long ago, had to choose which sort of charge to call positive and he (knowing nothing 
about electrons) made the second-best decision. This flow is called electric current, and because 
electrons have negative charge, the current conventionally flows the other way, from the positive terminal 
of the battery, through the wires and the lamps, back to the negative terminal of the battery. Obviously, 
there must always be a closed loop otherwise no current can flow. 

The filament wire in the lamp is very thin indeed and the current flow makes it white hot, or nearly so, 
giving out light. (But it also gives out far more heat, which is why filament lamps are being replaced by 
energy-saving lamps, which produce far less heat). The amount of current flow, measured in amps (after 
the French scientist Ampère), is determined by the voltage and the resistance of the filament, which is 
measured in ohms (after the German scientist Ohm). The connecting wires have resistance, too, but we 
make sure they are thick enough to have negligible resistance.  

We have arrived at Ohm's Law, one of the two most fundamental equations in electricity: 

Current = Voltage/Resistance 

The '/' means 'divided by'. We often use symbols rather than words, an in symbols the equation is: 

I = V/R 

It may seem strange that the symbol for current is 'I', but the reason is in the dim past. We can also write 
the equation in two other ways:  

R = V/I and V = IR 

'IR' means 'I times R'. 
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The battery produces direct current – the current always flows from the positive terminal, through the 
circuit, to the negative terminal. This is the sort of current that Edison liked but his rival Tesla preferred 
alternating current, in which the current direction regularly reverses. For example, public electricity 
supplies deliver alternating current which reverses 100 or 120 times a second. Two reversals are called a 
cycle and 1 divided by the time for two reversals is called the frequency, which is measured in Hertz (after 
the German scientist Hertz). Alternating current has the advantage that it can be sent over long distances 
at very high voltages (to minimize power loss in the resistance of the wires) and the voltage reduced 
locally by transformers to much lower values suitable for use in industry and homes. 

In a circuit carrying alternating current there may be one or two more 'resistance-like' effects, but they are 
not quite the same as resistance because they involve storing energy when the current is flowing one way 
and releasing it when the current reverses. Resistance doesn’t involve any storage. For us, the more 
significant effect is called inductance, where energy is stored in a magnetic field created by the current 
flow. All wires, loops and coils have inductance, which is measured in henrys (after the American scientist 
Henry). In a loop system we want the magnetic field but we do not want the current-opposing effect of the 
inductance to stop the system working well. 

The opposing effect of inductance is called inductive reactance and is proportional to the frequency of the 
current, with a factor of 2π included (π, pi, is the ratio of the circumference of a circle to its radius, 
approximately 3.14): 

XL = 2πfL 

XL is the inductive reactance (measured in ohms) 

f is the frequency in Hertz 

L is the inductance in henrys 

The other type of opposition is called capacitance, measured in farads (after the British scientist Faraday). 
The opposing effect is called capacitive reactance and is inversely proportional to the frequency, with that 
2π factor again: 

XC = 1/(2πfC) 

XC is the capacitive reactance (measured in ohms) 

2πf has a name of its own – angular frequency – and symbol ω (lower-case omega). It is measured in 

radians/second, but don't bother about that. 

C is the capacitance in farads. However, a 1 farad capacitor is a rare beast; most practical capacitors 
have values in microfarads µF (one millionth), nanofarads nF (one billionth) and picofarads pF (one 
trillionth). 

Resistors, inductors and capacitors are components, and you can buy them at Radio Shack (and other 
fine stores, of course). Although resistance, inductive and capacitive reactance are all measured in ohms, 
we can't add them up directly to find the total effect. This is because reactances introduce phase-shift 
between the alternating voltage and current. Inductive reactance delays the current, while capacitive 
reactance delays the voltage (usually described as the current 'leading' the voltage, which looks a bit 
strange).  

Think of one cycle of AC voltage or current (two changes of direction) as two marching paces: left, right. 
Inductors and capacitors make the current break step with the voltage, while marching at the same pace 
(the frequency). For reasons embedded in the underlying mathematics, phase-shift is measured as an 
angle, such as 45°. 

If we have a resistor, an inductor and a capacitor in series with a generator producing an alternating 
voltage, the total opposing effect is: 

Z = (R2 + XL
2 - XC

2) 

Z is a new creature, called impedance. It is still measured in ohms. This means that we have a modified 
Ohm's Law for AC circuits, which can be written in any of the three ways: 

I = V/Z and Z = V/I and V = IZ 

You may notice that a particular value of f makes XL and XC equal, so they cancel out and we are left with 

 2



101 
102 

103 

104 
105 
106 

107 
108 
109 
110 
111 
112 

113 
114 
115 
116 
117 
118 
119 
120 
121 

122 
123 
124 
125 
126 

127 
128 
129 
130 

131 

132 
133 
134 
135 
136 
137 

138 

just R. This effect is called resonance and it's very important in electronics in general but not in hearing 
loop systems. 

4 Ideal generators and amplifiers 

We have to start with ideal things because if we start with real things the explanations get too complicated. 
Instead, we find out what ideal things do and then make any necessary corrections for real things; often 
they are too small to bother with. 

An ideal voltage generator maintains its voltage constant, whether the current required by a circuit is 1 
microamp (one millionth, written 1 μA: µ is 'mu') or 1 megamp (1 million, written 1 MA). This is because it 
has zero internal impedance. An ideal current generator maintains a constant current in a circuit, even if 
that means that the voltage across its terminals is 1 microvolt (1 μV) or 1 megavolt (1 MV). This is 
because it has infinite internal impedance. Internal impedance, or source impedance is a very important 
concept and we use it a lot. 

An ideal amplifier has an output terminal and at least one input terminal; the type we are most concerned 
with has two input terminals. The amplifier is powered by magic, so that we can deal with the essential 
power supplies of a real amplifier as a separate subject. The output voltage of the amplifier is a larger 
(amplified) copy of the input voltage. With a two-input ('differential') amplifier, one input produces an 
inverted copy of itself at the output (so that the output goes negative when the input goes positive), while 
the other input produces a right-way-up copy. Not surprisingly, these are termed inverting input and non-
inverting input. Electronics people often say minus input and plus input. Neither of the inputs draw current 
from any generator they are connected to; they have infinite internal impedance. The output is an ideal 
voltage generator – it has zero internal impedance. 

The ratio of the output voltage to the input voltage is the gain, which may be from 1 to millions. An ideal 
amplifier with infinite gain is called an ideal operational amplifier or ideal op-amp. You can buy real 
integrated circuit (IC, 'chip') op-amps (with gains from about 50000 to several million) at the parts store; 
some are very low-cost, others definitely are not. For hearing loop technology, there is no need to use 
costly op-amps. 

Some audio amplifier integrated circuits are specialized op-amps, while others do not have all the 
properties of an op-amp but are very similar. For example, they may have two inputs but the internal 
impedance of each is, say, 50 kilohms (50 kΩ; k means 'x1000' and 'Ω' is upper-case omega) instead of 
being infinite. 

5 Graphics 

We need graphics to show and discuss circuits. These are called circuit diagrams or schematics. To 
begin with, they will be about ideal components and not necessarily practical circuits that can be built. But 
they make explanations so much easier than without them. I am using the schematic drawing part of the 
powerful simulation program LTspice (http://www.linear.com/designtools/software/), provided free pro 
bono by Linear Technology Corporation, because it's very easy to use. But the graphics embedded in this 
paper are not in LTspice's native format, so you don't need the program yet (maybe later!). 

First of all, we need to look at the symbols used in schematics, a selection of which is shown in Figure 1 
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Figure 1 Symbols used in schematics 

Components are numbered in sequence (R1, R2..) for reference and the value of each is also shown , 
with or without the unit (100 for a resistor must be 100 ohms). 'k' means 1000, 'µ' means 1 millionth, 'n' 
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means 1 billionth. We saw 'MA' earlier, meaning 1 million amps, so 'M' means 1 million, BUT 'm' means 
one thousandth. There are many more of these 'metric prefixes', which you can find listed on the Web, 
e.g. at: 

http://astro.unl.edu/classaction/tables/intro/si_prefixes.html  

but we don't use all of them in electronics. 

Generators are also numbered and the voltage or current stated as well. Most generators produce either 
DC or AC, especially in the sort of example schematics we are soon to study. 

6 Audio frequencies and waveforms 

There is a sort of mantra that humans can hear sounds of frequencies between 20 Hz and 20 kHz (20 
kilohertz, 20 000 Hz). But some are more audible than others, even for people with 'normal' hearing. 
Unless they are very loud, sound with frequencies less than about 500 Hz are progressively less audible 
as the frequency decreases. There is a similar effect above 4 kHz. How do these frequencies in Hertz 
relate to musical tones? The oboe's 'A' note to which the orchestra tunes is 440 Hz. 20 Hz is below the 
range of most instruments, while 4.186 kHz is often the highest note on a piano. In audio electronics, we 
have a standard measuring frequency of 1 kHz. So frequency is closely related to musical pitch. 

So far, we have simply described AC in terms of regularly reversing current. But the current (or voltage) 
can vary in an infinity of ways between reversals. This variation is what gives sounds their different 
qualities. For reasons embedded in the underlying mathematics, the 'simplest' variation is called a 'sine 
wave', and all sounds, voltages or currents can be built up by adding sine waves of different frequency 
and amplitude (size) There is an electronic instrument called an 'oscilloscope' that allows us to see on a 
screen the variations in amplitude over time, called the 'waveform'; this is very familiar from films with any 
sort of 'scientific' context.  A human whistler, ocarinas and some flutes produce nearly pure sine waves, 
i.e. just a single frequency. But musically, sine waves are bland and boring. 
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Figure 2 Ten cycles of a 1 kHz sine wave with peak voltage 1 V ('ms' = milliseconds) 

We use this sort of graphic a lot in electronics. The horizontal scale (x-axis) is time in this case, and it's 
often frequency in other cases. The vertical scale (y-axis) is volts, but it might be something else in 
another case. Don't worry what x and y mean: they are just parts of the labels 'x-axis' and y-axis'. 

Speech and music waveforms are very much more wriggly, as shown in Figure 3. They can be separated 
into many sine-wave components of different, constant frequencies and time-varying amplitudes. 
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Figure 3 50 ms of a male voice recording with peak voltage 1 V 

7 Voltages and currents with different waveforms 

Both the sine wave and the speech signals have a peak voltage of 1 V, but the sine wave reaches that 
every 0.5ms, whereas the speech reaches it very briefly at an interval of 41 ms, and another 50 ms slice 
of the same recording might not reach it at all. So we can't really compare them on the basis of peak 
voltage (or current). What works mathematically is to compare them on the basis of their heating effect. 
When current flows through a resistance, electrical power is converted to heat. There is an equation, 
Joule's (after the British engineer) Law, which we can write, using W for power: 
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Power = Volts x Amps or W = VI or I = W/V or V = W/I 

and then, if we combine Joule's Law and Ohm's Law, we get: 

W = V2/R, or W = I2R 

and we can switch round which symbol is on the left as for Ohm's Law. Note that V and I appear squared. 
After some mathematics based on those equations, the necessary voltage or current we require is found 
to be the square root of the average of the voltage or current squared, normally averaged over at least 
one cycle This is called the 'Root-Mean-Square' (RMS) voltage or current. Note that there is no such thing 
as 'RMS power' no matter how many times you see it in specifications. It can be calculated, but then so 
can your age divided by your height – they don't mean anything useful. And what is wrongly described as 
'RMS power' is actually average power. 

Meters can be designed to measure RMS voltages and currents; there are often called 'true-RMS' meters. 
Other meters use approximations to RMS and are not accurate on speech, music and noise signals. 

8 Amplifiers (at last!) 

In discussing how circuits work, voltages and currents other than the power supplies are called 'signals'. 
In explanations, we usually don't show the power supplies, because, if correctly designed, they just make 
the circuit work, without affecting how it works at all, except by limiting the voltage, current or power that 
the circuit can produce or absorb. 

So, here we have a simple amplifier schematic/circuit diagram (Figure 4). It isn't quite a simple as 
possible; it includes two resistors and two capacitors. They are there because without them the circuit 
with 'ideal' components would be too ideal to be helpful. 
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Figure 4 A nearly-basic amplifier 

The input signal comes from the generator V1, which produces a sine wave voltage at 1 V peak (not 
RMS), which, when we ask LTspice to simulate the circuit, is swept in frequency from 20 Hz to 20 kHz, 
while LTspice calculates the output voltage at each frequency. Disregard the + and - signs: they are only 
needed if we are looking at phase shift. The amplifier U1 has a gain of 10 times, but the other parts cause 
the overall gain – the ratio of output to input – to be less. U1 is some sort of integrated circuit or module 
that we can't get inside; we can only use its connections to the outside world as the manufacturer advises. 

C1 is there in a practical circuit to block DC coming from whatever is connected to Input. R1 and C2 are 
there because we don't want the amplifier to be busy amplifying stuff at frequencies higher than we can 
hear. R2 is necessary because each input must have a path to the zero-voltage wire at the bottom. C1 
and R2 cause the amplifier's output to decrease at low frequencies. R1 and R2 cause the voltage at the 
minus input of the amplifier to be just over 0.9 V peak at middle frequencies, where the capacitors have 
almost no effect. The small triangle symbol is usually described as 'ground' or 'earth', but that is 
misleading and gets complicated. It really tells LTspice 'This is the zero-voltage reference point from 
which you shall measure all voltages'. Unlike real wires, LTspice wires have no resistance or inductance - 
they are ideal wires. The magic spells 'lib.opamp.sub' and '.ac oct 10 20 20k' are instructions to LTspice 
to tell us what the circuit does. You may notice that the input signal goes to the minus input, so the output 
waveform is upside-down compared to the input waveform. For speech and music, this has little effect, 
except a small subjective change in some male voices. This sort of amplifier is an inverting amplifier. 
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When we run LTspice, it tells us the frequency response of the whole schematic from Input to Output, as 
shown in Figure 5. 
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Figure 5 Frequency response in terms of output volts 

We see that at middle frequencies, the output reaches 9 V, which is what we would expect with a signal 
at the minus input of 0.9 V and an amplifier gain of 10. 

9 The dreaded decibel 

We don't often use frequency response graphics with the response measured in volts. For a large number 
of reasons, we prefer to use decibels on the y-axis. For example, in a cascade of amplifiers the voltage 
gains multiply but the decibel values simply add. A voltage of v volts is expressed in decibels referred to 
1 V as: 

LV = 20log(v/1) 

The same formula works for currents. There must always be a reference voltage or current, stated or 
implied, unless we are looking at the difference in decibels between two voltages or currents (the ratio of 
the voltages or currents themselves), in which case the reference voltage or current cancels out. 

The frequency response of our amplifier with a decibel scale for the output (the output level) is shown in 
Figure 6. LTSpice works in decibels referred to 1 V unless we play tricks with it. 
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Figure 6 Frequency response in terms of output volts expressed in decibels referred to 1 V 

Traditionally, we would concentrate on the frequencies where the output level has decreased by 3 dB, a 
ratio of 0.71 in voltage and 0.5 in power, so these frequencies are half-power points. In our case, the 
frequencies are 31 Hz and 7.5 kHz. But in studying hearing, the -10 dB frequencies are often more 
significant, as anything below that isn't sufficiently audible (unless it's unwanted noise, in which case it 
has to be much weaker). In fact, a reduction of 10 dB is often sensed as 'half as loud'. Also the shapes of 
the roll-offs at each end of the frequency response curve can be important. The roll-offs in Figure 6 are 
called 'first-order' because they are due to one resistor and one capacitor. Higher order roll-offs are due to 
more components and show as steeper curves. 

10 Negative feedback 

This is something market researchers hate but electronic engineers couldn't do without. It was invented 
by the American engineer Black, and at first wasn't taken very seriously by his peers. It consists of simply 
sending back (feedback) a fraction of the output signal of an amplifier so as to oppose the input signal 
(oppose = 'negative'). This reduces the gain but it improves frequency response and reduces distortion, 
which are good things. Given enough of it, the overall performance depends almost entirely on the 
components creating the feedback and not on the properties of the forward path through the amplifier. 
This works especially well with op-amps, because their forward gains (usually represented as the symbol 
AOL, for 'open-loop') are typically 50 thousand to 1 million. If we reduce the gain of the whole circuit to 10 
or even 1000, we are applying a lot of feedback. 

Figure 7 shows a simple example of negative feedback, in which the components connected between the 
output and the minus input provide it. The amplifier U1 is now an op-amp with an open-loop (i.e. without 
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261 feedback) gain of 100 thousand. 
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Figure 7 Amplifier with negative feedback 

It isn't as simple a circuit as possible, because that would give unrealistic results. The main feedback path 
is R2 and C2. At middle and high frequencies, R2 and R1 act to set the gain from Input to Output to be a 
fraction less than 10 times, or 20 dB. It's a fraction less because of the effect of R3, 10 MΩ (megohms: 
Spice simulators use 'meg' instead of 'M' because they are case-insensitive and 'm' means 'milli'). R3 is 
necessary because it provides a DC path to the zero-voltage reference via the op-amp internals. C3 
prevents the frequency response going up to high frequencies that we do not want to amplify. C2 has a 
special function – it cancels the roll-off effect of C1 down to very low frequencies, where its impedance 
becomes comparable with R1's 10 kΩ. 

The overall result of this is shown in Figure 8. You can just see the effect of C2's cancellation effect in 
that extended low-frequency response and its limitation by R3 at the extreme left of the response curve. 
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Figure 8 Frequency response of the circuit in Figure 7 

The output voltage of an op-amp is equal to the open-loop gain (OLG) multiplied by the difference 
between the plus input and minus input voltages. Because the gain is so high, for any reasonable output 
voltage (up to, say, 20 V) the input voltage difference is minute and can be disregarded, In Figure 7, this 
means that the minus input is at zero-reference voltage, the same as the plus input. The input impedance 
at the minus input is infinite, so no current flows into it. The current flowing through C1 and R1 flows 
through the feedback network to the output, which we can also regard as current flowing the other way. 
Thus we have a feedback current that is proportional to the output voltage, and this configuration is 
known as voltage feedback. 

We now come to a very important step on our way to current-drive amplifiers. We look at the effect of 
negative feedback on the output source resistance of an amplifier. In Figure 9, R4 represents the source 
resistance, which is actually inside a real op-amp that you can buy; 100 ohms is a typical value. Our 
schematic now has a new magic spell which allows us to do two simulation runs, one with R5 = 100 Ω 
(brown curve) and one with it set at 1 MΩ (red curve). You can see that without the feedback, R4 and R5 
being both 100 ohms, the output voltage would drop from just under 10 V to just under 5 V. (if you are not 
sure, the same current flows through both, so applying Ohm's Law...). What happens with the feedback 
applied is so dramatic that in order to show it in Figure 10 I have abandoned decibels and asked LTspice 
for the actual voltages, which show the very small difference much better. 

LTspice has a feature that allows very precise measurements on graphics. At 200 Hz, for example, the 
output voltage with the (negligible) 1 MΩ load resistance (R5) is 9.69562 V, while with R5 = 100 ohms it is 
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9.69459 V. Since the same current flows through the source resistance and the 100 ohms, their 
resistances are proportional to the voltages across them, so we can write: 

OSR = 100 x (9.69562 - 9.69459)/9.69459 = 0.0106 Ω 

where OSR is the apparent output source resistance with feedback.  It's gone down from 100 Ω without 
feedback to just over a hundredth of an ohm.  
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301 Figure 9 Amplifier with 100 Ω output source resistance 
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Figure 10 Effect of feedback on the apparent output source resistance 

In fact, there is a fundamental principle at work. The op-amp's open-loop gain is 100 thousand, while the 
circuit has a gain of (nearly) 10. So the output source impedance is reduced in the same ratio, i.e. by a 
factor of 10 thousand. 

11 Current feedback 

Figures 7 and 9 have feedback derived from the output voltage. We can also derive feedback from the 
output current – and that makes (when correctly done) a current-drive amplifier! Figure 11 shows an 
example using an op-amp. The signal is applied to the plus input, leaving the minus input free for the 
feedback connection, which is taken from R5, which is in series with the load resistance R4. The voltage 
across R5 is proportional to the current through R4 and R5; no current flows into the minus input. 
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Figure 11 Amplifier with current feedback 

Figure 12 shows what happens when the load resistance R4 is 100 Ω or 1kΩ. The output current changes 
only by a very small amount indeed. In fact, I had to use a special magic spell so that LTspice would 
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actually show two curves in Figure 12. This behaviour is exactly what we want for driving hearing loops, 
because their impedances vary with frequency. 
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Figure 12 Frequency response of the Figure 11 schematic with two values of R4 

12 Impedances of hearing loops 

A hearing loop is just a loop of wire. The wire has electrical resistance, and because the AC current in it 
generates a magnetic field, it has inductance, which can be defined as the rate of change of magnetic flux 
with current. If it were laid out as a 'hairpin', with the 'go' and 'return' legs very close together, the 
inductance would be very small, because the magnetic fields from the two legs almost cancel out. It 
wouldn't be a very good hearing loop! Opened out into a useful loop encircling an area, its inductance 
increases. A guide value is 1.6 µH (microhenrys) per metre of wire. Suppose we have a loop of wire with 
an area of 1 mm2 and the wire is 48 m long (it is a square, 12 m or 40 feet on each side). Its inductance is 
48 x 1.6 = 77 µH. At 100 Hz, this has a reactance of 2π x 100 x 77 µ = 0.048 Ω, which is negligible 
compared with the resistance, which is 0.74 Ω. But at 5 kHz, the reactance is 50 times as much, i.e. 2.4 Ω. 
If we drove the loop with a constant voltage, the current would be considerably reduced at 5 kHz, causing 
poor intelligibility. But if we use a current-drive amplifier, that doesn't happen. Figure 13 shows our 
amplifier now with a loop as load and Figure 14 shows the resulting frequency response. 
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335 Figure 13 Current-feedback amplifier with loop load (R4 and L1) 
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Figure 14 Frequency response of the loop current in the Figure 13 schematic 

I have tweaked the values of the 'realism' components, C1, C2, R1 and R2, so that the frequency 
response of the loop current is -3 dB at 100 Hz and 5 kHz, as specified in IEC 60118-4. But the loop 
current is -21 dB referred to 1 Amp, i.e. 90 mA, which isn't going to produce 400 mA/m anywhere useful in 
the loop. Also, the value of R5 is much higher than is used in real amplifiers, because in this example the 
loop current is quite low. 
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For this 12 m square loop, to get 400mA/m field strength at the centre of the loop, we need a loop current 
given by: 

I = πA x 400/(22 x 1000) 

A is the length of the side of the square, 12 m in this case, so I = 5.3 A. In practice, we need more, 5.7 A 
because our listeners will not have their ears at floor level and the reduction of field strength at the 
average 'listening height' of 1.45 m is not negligible. But we will set that aside for the time being. What is 
clear is that to get a loop current of over 5 A we will have to use an audio power IC instead of a simple 
op-amp. But there is a way we can reduce the current requirement, at the expense of needing more 
output volts. The specifications of many audio ICs (chips) allow this, and there will be more about it in 
some examples later. 

13 Current requirements of loops 

Loop system designers make frequent use of a graph or a table of current values. The current required 
depends on the width of the loop, its length (greater than, or equal to, the width) and the distance 
between the hearing aids and the plane of the loop, the listening height. For the most-used graph or table, 
we take the listening height to be 1.45 m, up from the floor or down from the ceiling. Also, we call 
length/width the 'aspect ratio'. 

Here are the graph and table as calculated with Excel. (It is very difficult to get the complicated 
expression for the current into Excel without errors.) 'Width' is the shorter side of the loop (unless it's a 
square, with q = 1) and 'q' is the aspect ratio. 

 362 

363 Figure 15 Current requirements for loops 
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Figure 16 Loop current table from Excel. q is the aspect ratio 

It is easy to see that no loop requires less than about 3 A. The only way we can use amplifier chips that 
won't deliver 3 A is to use loops of more than 1 turn. Provided the turns are all bunched up close together 
(e.g. the cores of a multi-core cable), the approximate current required is divided by the number of turns 
(often a little more is found to be necessary; an extra turn might solve that) and the inductance is 
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approximately multiplied by the square of the number of turns, this increasing the voltage required to drive 
the necessary current. This is often not a problem because the amplifier will produce enough output 
voltage. However, the installation of a loop with many turns can be difficult unless a multi-core cable is 
used; it is better to use an amplifier chip that will deliver more current. To go further with this, we need to 
look at actual examples of current-drive amplifiers using popular amplifier chips. 

14 Keeping the amplifier cool 

When the amplifier IC is working, it gets warm, because it takes power from the power supply but delivers 
only some of it to the loop. In fact, it can only deliver power permanently to the resistive part of the loop; 
anything it offers the inductive part has to be re-absorbed during the next half-cycle.  This effect mostly  
increases the heating in the IC  and we can see why in Figure 17. We can't get inside the IC to obtain 
these curves, so they are from an amplifier using separate transistors. 

a) Voltage across (brown) and current through (red) an output 

transistor, with resistive load 

b) Voltage across (brown)and current through (red) an output 

transistor, with inductive load (loop) 
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Figure 17 Voltage and current waveforms inside the amplifier 

With the resistive load, the current is low while the voltage is high, and vice versa, so the heating power 
(voltage x current) is low. With the inductive load, the current is shifted in phase relative to the voltage, so 
that high current occurs at the same time as higher voltages, so the heating power is increased.  We have 
to get rid of this heat by fixing the amplifier IC to a heat sink. 

It's possible to calculate this extra heating effect, which varies according to how hard the amplifier is 
driven. The worst case is testing the amplifier with sine wave test signals, which can produce many times 
as much heat as is produced when the amplifier is working with speech signals. Figure 18 gives a rather 
idealized guide to what happens. The  'Peak signal' curve applies to sine-wave testing at full output. The 
phase angle can't get to exactly 90°, because the loop always has some resistance, but at 5 kHz it can 
get to more than 80°. 
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Figure 18 Heating effect in the amplifier varies with signal strength and loop impedance phase 
angle 

The x-axis is the load phase angle, tan-1(2πfL/R) and the y-axis is the heating power in terms of the 
supply voltage x the load current.  

In practice, it's often more time-consuming to calculate a heat sink design than to measure temperatures 
on an actual amplifier. This is not the place to go into heat sink design, but there are some principles: 
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 thick metal is better than thin; 

 soft metal is better than hard (aluminium is much better than steel and soft and quarter-hard 
aluminium are much better than harder grades); 

 vertical is better than horizontal ('hot air rises', after all); 

 black is better than shiny (radiation loss is significant, and black anodized aluminium is widely 
used for heat sinks). 

15 Ideal and real amplifiers 

An ideal amplifier has infinite input resistance and zero output resistance. Real amplifiers have finite 
resistances in both cases. The finite input resistance is not a significant problem. But when we make a 
current-drive amplifier circuit, we want the output source resistance Rs (which is produced by the circuit 
configuration; it is not a property of the amplifier chip, whose finite output resistance does not significantly 
affect the operation of the circuit) to be much higher that the loop impedance, so that the loop current 
does not depend significantly on the loop impedance, which varies with frequency: 

Zloop = {(2πfLloop)
2 + R2

loop} 

f is the frequency in Hertz and the other symbols should be self-explanatory. Zloop is highest at the highest 
frequency we are interested in, 5 kHz. Some mathematics shows us that  if Rs is at least 5 times Zloop at 
5 kHz, the loop current is reduced by less than 0.2 dB, which is negligible. If it is 2 times instead of 5 
times, the loss at 5 kHz is nearly 1 dB, which may make it difficult to meet the requirements of IEC/EN 
60118-4. 

Referring back to Figure 11, some more mathematics shows that the value of Rs is very nearly equal to 
the value of R5 multiplied by the amplifier gain, which is the ratio of the output voltage to the difference 
between the + input voltage and the – input voltage. (For an op-amp, this is very small indeed but for 
audio amplifier chips it can be anything from 10 to 400.) It has been alleged that the Rs of some loop 
amplifiers was not high enough in the past, leading to poor high-frequency response. 

16 Circuits with real amplifiers 

16.1 LM386 

This device is small, inexpensive and works well, BUT its data sheet seems to be rather conservative in 
its output current specification (calculated from the output power values). The highest calculated value is 
300 mA, and I tried to get a more definite value from the manufacturer, without success. It will produce a 
lot more output current without getting too hot, using test signals similar to speech and music, but these 
higher currents may cause longer-term damage, so we should not go there. 

Figure 15 shows that no area-coverage loop requires less than 3 A loop current, so to use the LM386 we 
would need a loop of at least 10 turns, which is pretty impracticable. It would be so much simpler to use 
an amplifier with a higher output current. So what about a smaller loop, such as a neck loop?  It turns out 
that there is still a problem. Remember, we need current drive for area-coverage loops because the 
inductive reactance of a loop at 5 kHz is bigger (a lot bigger) than the resistance. But this does not always 
apply to practicable small loops. We often find that, except for a single turn of very thick wire requiring a 
large current (bad for battery life even if the LM386 or a similar device can supply it), as we add more 
turns the inductive reactance never gets much larger than the resistance, in spite of it being roughly 
proportional to the square of the number of turns, because we have to reduce the thickness of the wire 
also in proportion to the number of turns, otherwise the loop would become very thick and stiff. 

The solution is to use a different way of getting a constant loop current, which has the considerable 
advantage that the resulting loop works with any reasonably standard headphone output, supplied by a 
conventional voltage-drive amplifier. But the loop, which needs around 15 turns (a miniature 15-core 
cable with the cores connected in series), is still current-driven, because it has a resistor of 14 Ω in series, 
so it also looks like a headphone to the source of signals. That 14 Ω completely swamps the impedance 
of the loop itself, keeping the current through it constant. My neck loop has an inductance when spread 
into a 230 mm diameter circle of 144 µH, which is 4.5 ohms at 5 kHz, and it has 3.9 Ω resistance, making 
the impedance 6 Ω, so the '5 times rule' isn't met, but it works pretty well; the response at 5 kHz is down 
0.27 dB, still negligible. 

Note that this is by no means 'energy efficient': the majority of the battery power just warms up the 16 Ω 
resistor, but we simply don't have amplifier chips that can produce about 1 A output current with a supply 
voltage of about 30 mV to suit a single-turn loop. The Universe is not that accommodating to neck loops 
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and looped hats. In any case, the loop requires only 60 mA for 400 mA/m, so the maximum power would 
be 0.062 x 19.9 = 71.6 mW and the long-term (60 seconds) average power is 4.5 mW. Not much global 
warming potential there! 

16.2 LM380 

This device looks a bit more promising, because it can deliver 0.9 A. However, for reasons hidden in its 
internal electronics, it will only work correctly in current-feedback mode at much less than its full potential. 
The problem is the tendency, mentioned in the data sheet, for a burst of high-frequency oscillation to 
occur during part of the signal cycle. Unless you looked at the output with a wide-band oscilloscope, you 
would not see this, but it is not acceptable. The LM380 can accept a supply voltage as high as 22 V, but 
there is no point in using a higher voltage than necessary as it just heats up the device. It is thus much 
better suited to the 'series resistor' alternative approach to current drive explained above. Note that an 
8 Ω series resistor needs to have a power rating of 8 x 0.92 = 6.48 W or more if the full output current of 
0.9 A is needed, but with speech signals, the average power is only one-sixteenth or so of that. 

There isn't anything special about the value of 8 Ω for the series resistor; one could use a higher value, 
which requires a higher supply voltage, so there doesn't seem to be much point. 

16.3 TDA2003 

This device is particularly suited for current-driving smallish area-coverage loops. It is designed to drive 
low impedance loads, down to 1.6 Ω, while being intended to work from a single supply voltage of up to 
18 V, which is enough for what we want to do. Its peak current limit is 3.5 A but the non-repetitive limit, 
which is what applies to speech signals, is 4.5 A, giving an RMS value of 3.2 A. This is not enough for 
anything but a 3.5 m square single-turn loop, but if we use two turns,  effectively giving us 6.4 A to play 
with, Figure 15 shows that we could drive quite large loops, more than 10 m square, 8 m by 16 m or 7 m 
by 35 m. In fact, it would be unusual for such large areas to be satisfactorily served by single peripheral 
loops; they would most likely require arrays of smaller loops, to reduce overspill and/or combat metal loss.  

The device (there is also a TDA2003A version with the same specification) is listed as 'obsolete' but it 
seems to be still freely available. 

To take a specific example, the characteristics of a typical 8 m square loop are: 

Wire area: 1 mm2   

Current required for 400 mA/m at 1.45 m above centre: 2.1 A per turn 

For 2 turns: Resistance: 1 Ω Inductance 225 µH approximately: it depends on how close the two 
conductors are. For best results use twin figure-8 cable or twisted pair, with the two cores connected in 
series. 

Peak voltage required at 1.6 kHz: 7.3 V 

Why 1.6 kHz? Because speech doesn't include all frequencies at the same strength. The curve of 
strength against frequency is called the spectrum, and it slopes off above 1.6 kHz, so while we need to 
have a constant loop current, at least at all frequencies from 200 Hz to 2.5 kHz (remember the current 
can and should be less at 100 Hz and 5 kHz), the system will never be called upon to supply maximum 
current at frequencies above 1.6 kHz. This is very helpful; by keeping the loop voltage down (it would 
have to be 23 V at 5 kHz), the heating of the TDA2003 and the requirements for the power supply are 
both reduced. To get 7.3 V peak, we need a supply voltage of rather more than double, i.e. 17 V. 

With these figures we can build an amplifier and also use Spice simulation to investigate far more than we 
can do in a reasonable time by measurement. This device is not like an op-amp; the + and - inputs are 
quite different electrically. The + input (pin 1) has a resistance of about 100 kΩ to pin 3 (ground) while the 
– input (pin 2) 'sees' the emitter of a transistor and so has a quite low resistance to ground. 

Figure 19 shows the circuit diagram of a TDA2003 amplifier in the form of an LTspice schematic, similar 
to that in Figure 13, flanked by graphs of loop current (top)  and voltage (below). The loop is represented 
by L1 and R1. The TDA2003 Spice model was kindly made for me by Jim Thompson. The brown curves 
are for a conventional voltage-drive configuration and the red curves show, particularly, the flat frequency 
response of the loop current.  LTspice requires a number of 'magic spells' on the diagram to tell it what to 
do.  For the current-drive  amplifier, R8 is very small (compared with R7) and R6 is 200 mΩ, giving an 
effective current-source resistance of 20 Ω. For the voltage-drive amplifier, R6 is made very small 
(compared with R1 and R4) and R8 is made 100 kΩ to compensate for the gain increase due to the 
removal of the current feedback. 
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It is easy to see that, as expected,  the 20 Ω current source keeps the loop current constant up to at least 
10 kHz, whereas without it, it begins to fall off above 400 Hz.  But what happens at low frequencies? With 
voltage-drive, the current falls off below 300 Hz, whereas with current drive it is constant down to 10 Hz. 
(To keep things simple, I didn't put any extra 'realism' parts in this circuit; it really is flat down to 10 Hz.)  
The reason that current-drive improves the response is due to C4.  With voltage drive, C4 sees a resistive 
load of  close to 1 Ω (the loop resistance), and its impedance begins to rise noticeably below about 
300 Hz, reaching 1 Ω at 160 Hz  and increasing further. But in current-drive mode, the capacitor 'sees' 
21 Ω, so the response does not begin to fall off even slightly until 15 Hz, which is almost off the end of the 
graph. 
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Figure 19 TDA2003 voltage- and current-drive amplifiers, showing the effects on the frequency 
response of the loop current and loop voltage 

16.4 TDA2030 

This device will work in current-drive mode but its maximum output current is internally limited to 3.5 A 
peak, which means 2.5 A RMS, and that is less than the 3 A minimum current required for any single-turn 
area-coverage loop. Also, the manufacturer now lists it as 'not recommended for new designs'.  It will not 
do anything the TDA2003 can't.  

There was once a TDA2030A version, rated for ±22 V supplies instead of ±18 V, which would probably be 
of little advantage for a loop amplifier, but the data sheet shows how to use such a device (plain or A 
version) to drive a pair of high-power discrete transistors. This is going well beyond 'Introduction...' so I'll 
say no more about it. 

16.5 LM1875 

This is a similar device to the TDA2030, but with a higher peak current limit of 4 A. It doesn't seem to offer 
any advantage over the TDA2003. 

17 Measurements on a TDA2003 amplifier 

These measurements relate to an actual amplifier using the circuit shown in Figure 19. The results with 
voltage drive are shown in Figure 20 a) and with current drive in Figure 20 b). 

a) voltage drive; the blue line is loop current and the red line is 

loop voltage 

b) current drive; the blue line is loop current and the red line is 

loop voltage 
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Figure 20 Measurements on a TDA2003 amplifier 

The output voltage rises at high frequencies even with voltage drive because the output source 
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impedance of the amplifier plus the internal resistance of the capacitor C4 is not negligible compared with 
the 1 Ω resistance of the loop. In fact, since the response rises about 6 dB, we can say that the 
resistance in question is also about 1 Ω. 

18 A complete loop system amplifier 

The paper concentrates on the 'current-drive' part of the complete loop system amplifier, but a complete 
amplifier includes two more main building blocks and four more features. Figure 21 shows the essential 
parts. 
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Figure 21 Block diagram of a complete loop system amplifier 

The preamplifier accept inputs from microphones and perhaps other sources (DVD, TV)  and adjusts their 
signal levels to be roughly equal. The input level control then sets the level into the AGC stage so that the 
AGC is in operation, as shown by the AGC indicator. The AGC needs a strong enough input signal to 
work. The output from the AGC stage is a (very nearly) constant level from all inputs. The loop drive 
control then sets the input level to the current-drive output stage to give the correct loop current, as 
shown by the loop current indicator. The installer should set the sensitivity of this indicator so as to get the 
correct loop current. If it's not set, the current may be too high and the telecoil sound therefore too loud. 
The loop current indicator also shows a fault (no indication) if the loop wire has been broken. 
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